Planarian MBD2/3 is required for adult stem cell pluripotency independently of DNA methylation☆

نویسندگان

  • Farah Jaber-Hijazi
  • Priscilla J.K.P. Lo
  • Yuliana Mihaylova
  • Jeremy M. Foster
  • Jack S. Benner
  • Belen Tejada Romero
  • Chen Chen
  • Sunir Malla
  • Jordi Solana
  • Alexey Ruzov
  • A. Aziz Aboobaker
چکیده

Planarian adult stem cells (pASCs) or neoblasts represent an ideal system to study the evolution of stem cells and pluripotency as they underpin an unrivaled capacity for regeneration. We wish to understand the control of differentiation and pluripotency in pASCs and to understand how conserved, convergent or divergent these mechanisms are across the Bilateria. Here we show the planarian methyl-CpG Binding Domain 2/3 (mbd2/3) gene is required for pASC differentiation during regeneration and tissue homeostasis. The genome does not have detectable levels of 5-methylcytosine (5(m)C) and we find no role for a potential DNA methylase. We conclude that MBD proteins may have had an ancient role in broadly controlling animal stem cell pluripotency, but that DNA methylation is not involved in planarian stem cell differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A lack of commitment for over 500 million years: conserved animal stem cell pluripotency.

Stem cells, both adult and germline, are the key cells underpinning animal evolution. Yet, surprisingly little is known about the evolution of their shared key feature: pluripotency. Now using genome-wide expression profiling of pluripotent planarian adult stem cells (pASCs), Önal et al (2012) present evidence for deep molecular conservation of pluripotency. They characterise the expression pro...

متن کامل

Differential Recruitment of Methyl CpG-Binding Domain Factors and DNA Methyltransferases by the Orphan Receptor Germ Cell Nuclear Factor Initiates the Repression and Silencing of Oct4

The pluripotency gene Oct4 encodes a key transcription factor that maintains self-renewal of embryonic stem cell (ESC) and is downregulated upon differentiation of ESCs and silenced in somatic cells. A combination of cis elements, transcription factors, and epigenetic modifications, such as DNA methylation, mediates Oct4 gene expression. Here, we show that the orphan nuclear receptor germ cell ...

متن کامل

DNA methylation directs genomic localization of Mbd2 and Mbd3 in embryonic stem cells

Cytosine methylation is an epigenetic and regulatory mark that functions in part through recruitment of chromatin remodeling complexes containing methyl-CpG binding domain (MBD) proteins. Two MBD proteins, Mbd2 and Mbd3, were previously shown to bind methylated or hydroxymethylated DNA, respectively; however, both of these findings have been disputed. Here, we investigated this controversy usin...

متن کامل

Comparative methylation profiles and telomerase biology of mouse multipotent adult germline stem cells and embryonic stem cells.

Recently, several groups described the isolation of mouse spermatogonial stem cells (SSCs) and their potential to develop to embryonic stem cell (ESC)-like cells, so-called multipotent germline stem cells (mGSCs). We were the first to derive such mGSCs from SSCs isolated from adult mouse testis and, therefore, called these mGSCs multipotent adult germline stem cells (maGSCs). Here, we comparati...

متن کامل

Identification and characterization of a family of mammalian methyl-CpG binding proteins.

Methylation at the DNA sequence 5'-CpG is required for mouse development. MeCP2 and MBD1 (formerly PCM1) are two known proteins that bind specifically to methylated DNA via a related amino acid motif and that can repress transcription. We describe here three novel human and mouse proteins (MBD2, MBD3, and MBD4) that contain the methyl-CpG binding domain. MBD2 and MBD4 bind specifically to methy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 384  شماره 

صفحات  -

تاریخ انتشار 2013